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Abstract. A new approach is presented for the analysis of feedback processes in a
nonlinear dynamical system by observing its variations. The new methodology consists of

statistical estimates of the sensitivities between all pairs of variables in the system based

estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be
essential for the analysis of the feedbacks processes involved in the dynamical system. The
method is described and tested on synthetic data from the low-order Lorenz circulation

model where the correct sensitivities can be evaluated analytically.



1. Introduction

Feedback processes are present in dynamical systems that involve nonlinear relationships
among many variables integrated over time. A formalism from electrical circuit theory
[Bode, 1945] has been used to study feedback processes in climate models [e.g., Hansen,
1984; Schlesinger, 1985] using the sensitivities of the system (first derivatives of one variable
by another). This approach characterizes the change of the equilibrium state of the system
after the introduction of an external forcing.

Such an approach is valid in a theoretical model where the instantaneous sensitivities
can be evaluated directly from the equations, however its application where the underlying
equations are unknown (or only partially know:.) and all we have are observations of the
system behavior over time is more questionable This is the situation faced in the study
of climate. There are various ways to estimate these sensitivities in experimental studies.
With numerical models, one approach is to intr>duce a perturbation of one variable at
a time and then evaluate the impact on other variables. The problems associated to

this approach are numerous. First, since the initial perturbation is limited to only one

account. Even if many variables are perturbed, it is difficult to be sure that the estimate
of the multi-variate sensitivities is complete. Second, in most cases the sensitivities are
estimated by finite differences between (usually equilibrium) states of the system. These
differences can be generated by geographical location differences or by time differences,
the result is dependent on the strategy adopted [Slingo et al., 2000]. As we will see, this
simplistic approach can be highly misleading because it provides only the space and/or
time averaged sensitivities that may not actually represent the system dynamics. Another
problem with this approach is that the technique estimates sensitivities that are already
“polluted” by the feedback processes in the numerical model. For example, if the effect of
a feedback is to damp the impact of one sensitivity, the sensitivity measured will be an

under-estimate (the same problem happens for an amplifying feedback process). To avoid

under or over-estimation of the sensitivities, their estimation needs to be done at a time



scale sufficiently small to neglect the impact of the feedback processes. Moreover, such
analyses can only be performed on models, not on observations of a real system, so the
feedback estimates are only those what were introduced into the model, which does not
provide model validation. Third, the sensitivities are often estimated by finite differences
averaged over many geographical locations (e.g. global), which suppresses all the possible
non-local processes. A similar effect is produced if the model outputs (or observations) are
time averaged before analysis.

So in many studies, the hypotheses at the base of the feedback analysis are too crude:
linear model, constant sensitivities, mutual independence of sensitivities, mono-variable
conception of the forcing and response. The conclusions from these studies are questionsble:
a single feedback factor (i.e., a scalar) is supposed to explain the nonlinear multivaria:e
processes integrated over time. If this number is positive, the process is said to have an
amplifying effect on the initial perturbation. If the number is negative, the effect is a
damping. We think that this over-simplification is misleading and that a time and spa-e
analysis of feedbacks may be required to understand such complex phenomena as climate.

Even if the sensitivities were correctly estimated, this classical approach only
characterizes the change of the equilibrium state of the system after the introduction of
an external forcing. The transient period, between the beginning of the forcing and the
equilibrium is not described and the time needed to reach the new equilibrium remains
undetermined. So the results of this kind of analysis are often insufficient even for
comparison between numerical models and observations.

We first refine the terminology required to perform feedback analysis with an emphasis
on the discrete formulation of dynamical systems, which is better adapted to prediction, to
the description of the cause and effect relations underlying the feedback processes, and to
the use of observations in the analysis.

Our approach uses a statistical modeling of the dynamical system to infer, from the
observed behavior of the system, the sensitivities of the variables of the system. These

sensitivities are the key concept for the feedback analysis. They give the inter-dependences



of one variable on another that cause the feedback loops in a dynamical system.
Because such empirical sensitivities provide the relationships among the variables they
can be used more directly to understand the physical processes involved in the system

dynamics (a model or observations) and to provide a more informative comparison of

[Smith, 1997].
As a test of the validity of this approach, we apply it to the output (observations)
of the Lorenz low-order dynamical model where the equations are known and theoretical
sensitivities can be calculated directly. We also evaluate classical feedback parameters and
compare their usefulness as descriptors of the system dynamics to that of the instantaneous,

multivariate and nonlinear sensitivities.

2. Feedbacks in a dynamical system

There are two general ways of formulating a dynamical system: the continuous and the
discrete approaches. We prefer in this study the discrete formulation because it is simpler
to describe the cause and effect relationships between variables. Furthermore, the discrete
approach is more practical for prediction when no theoretical physical evolution model is
available. We adopt the discrete formalism in the following, but will refer sometimes to
the continuous case. The goal of this section is to show how time integration of dynamical

relationships leads to feedback processes and to highlight the role of the sensitivities.

a. Dynamical systems

The object of this study is the analysis of a physical dynamical system by observing
the time variations of the quantities defining the state of the system. A dynamical system
is often described by a set of Ordinary Differential Equations (ODE) which come from the

physics of the problem. For practical considerations or because these ODEs are not known,



the dynamical system is often discretized in the form:
X(t+1)=A(P(t)) + (2 (1)

where X (t) is the p-dimensional vector of observable variables (defining the state of the
system) at time ¢, P(t) is the d-dimensional vector of variables defining the system behavior
(predictors) which can include X (t), €(t) is noise (instrumental or model errors), and A is
a mapping, possibly nonlinear (vectors and matrices are indicated in bold characters). This
kind of model is often used in atmospheric and oceanic sciences to perform, for example,
climatological predictions.

The determination of the good predictors P(t) is a crucial point for the quality of the
model. This cetermination uses all the physical a priori knowledge about the model. If
P(t) = X (t) the system is said to be auto-regressive. Sometimes, the prediction of X (t + 1)
requires the knowledge of X (), X(t — 1),..., X (t — ¢) because the system dynamics
has an inertia that requires the knowledge of previous steps. Then, the system is said
auto-regressive with memory g, denoted an AR(q) model. However, defining a new state
variable X'(t) = (X (t), X(t - 1),..., X (t — q)), one can rewrite this AR(q) system as an
AR(1) model with memory 1.

If the dynamical system (1) is linearized near P(¢;), we obtain:

X(to + A) ~ X (t0) = G(P(t)) - AP(to) + (1) )
where
G(P(w) = pr ®)

is the Jacobian or sensitivity matrix of the mapping A at state P(t;).
The uncertainty e(t) is often neglected, so the discretized system of equation (2) is

entirely defined by the sensitivities G(P(t)) of the dynamical system and by an initial state

P(to),



b. General feedback analysis: sensitivities integration

For simplicity of notation, we suppose, as is true in most of the cases, that the system
is auto-regressive, i.e. the responses are equal to the predictors, X (t) = P(t)

Even if the mapping A of equation (1) is linear, the global response of the
X(t+1)= A X(t) the matrix A is diagonal, the variables of the system are independent,
so each variable X; evolves independently as X;(to + k At) = (Ai)* - Xi(to). The absolute
value |A;] is the damping (if |A;| < 1) or the amplifying (if [A;] > 1) coefficient of the
variable Xj;.

If matrix A is non-diagonal, i.e. some of the variables of the system are dependent
on other variables, the system is more complex: an iaitial perturbation of one variable
will be propagated into all the variables that are dire:tly or indirectly dependent on this
initially perturbated variable. After k time steps, thc state of the system is given by:

X (ty + kAt) = A* . X (t,). So, the responses, X (t), at any time, ¢, are still a linear
combination of the predictors at time, to, but the impact of an initial perturbation is more
complex than the previous case because feedback loops have mixed the initial perturbation
into each linked variable.

If the mapping A of equation (1) is nonlinear, the Jacobians are dependent on the state
X (t). So, even if we linearize the mapping A using its Jacobians, G(X (1)), after k time
steps, the state of the system is given by: X (to + kAt) = [Hle G(X (to +1 At))] - X (to)
which is even more complex, where [] is the product symbol.

To define a feedback process in the discrete formulation of a dynamical system, we need
at least two time steps to describe the feedback loops involved. If an initial perturbation
AX (ty) is introduced into the system at time, to, the response of the system at time,

to + At, is approximated to first order by:
AX(t() + At) ad G(to, to + At) ’ AX(to), (4)

where G(to,to + At), the gain of the system from ¢y to £o + At, is the Jacobian matrix



G(X(t)) of the mapping A between [to, to + At]: matrix G(ty,t) + At) has elements

BA(to+Dl) _ B8X(to+Al)
dX;(te) ~  8Xj(to)

at coordinates (7,7). An initial perturbation AX;(t;) on variable X;
at time ¢ is then propagated at time ty + At to each variable X; that is linked to X ; via
off-diagonal terms in G(to, o + At). But the resulting perturbations AX;(to + At) are the
direct impact of the initial perturbation, so there is no feedback during [to, to + At].

At time, t =t + 2At, the impact on the system is given to first order by:

AX (to + 2A1)
~ Gty + At tg + 2At) - AX (0 + At) (5)
~ G(tg + At to + 2At) - Gty, to + At) - AX (to) (6)
~ G(to, tg + 2At) - AX (o). (7)

The previouly propagated perturbations, AX;(ty + At), resulting from AX ;i(to) can then

perturb AXj;(tg + 2At), completing a feedback loop. The initial perturbation AX ;(to) can
be amplified or damped into AX;(ty + 2At). We see in this simple example that feedback
processes result from the time integration of the variable dependencies of the system. The
term G(fo,tp + 2At), representing the evolution of the system in two time steps, includes

these feedback loops.

c. Forcing / Response

We introduce in this section the concept of external forcing to formalize the
perturbations of the variables of the system we have discussed in the previous example. It
is important to note that the feedback processes are present in a dynamical system, even
when no external forcing is applied (forcing and feedback are often confused).

An external forcing is a perturbation of the internal variables of the system (i.e.
variables that define the state of the system). The external forcing has an impact on the
internal variables, but the reverse is not true: the forcing is independent of the internal
variables. There are many ways an external forcing could operate. The simplest model is

the introduction of an unique perturbation at time to: E(t) = E¢é(ty — t), a time-localized
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volcanic eruption for example. In this case, the impulsive initial perturbation will be
propagated in time through the internal variables, following the inter-dependencies of the
variables. This is the example discussed in the previous section.

The external forcing can also begin at time to and remain constant in time:

E(t) = Eq,t € [to,to + At,...]. In this case, the relations (5)/(7) become more complex:

AX (to + 24t)

0X (to + 2 At) X (to + 2 At) X (to + At)
0X (to + At) 0X (to +At) 09X (to)

~ Eo+ G(to + At, to + 2 At) - Eg + G(to, to + 2 At) - Eg (9)

~ E(to + 2At) +

- E(to) (8)

- E(to + At) +

If the gains of the system are constant, equal to a constant G (i.e. a linear dynamical

system), then at time ¢ + k At:

AX(to+kA)=(I+G+G*+...+G") - E (10)
I_Gk-H
=71-¢ P 1

where T is the identity matrix. If the eigenvalues of matrix G have an absolute value lower
than 1 (otherwise the system is unstable), the effect of the external forcing is stabilized, the

dynamical system eventually reaches in time a stabilized state:

AX (to + k At) = TZI"G' . Eq, fork — +00 (12)
G
~ FEy+ i*:-é - Ey. (13)

For example, a mono-variable system with G = 1/2, Ep = 1 and X(to) = 0 stabilizes at
kETwX (to + k At) = 2, the forcing has changed the equilibrium state of the system. Figure
1 shows the values of the stabilized solutions of this simple system for different values of G.
If =1 < G < 0 then the system stabilizes, but oscillates. If G is positive and close to 0, the
system stabilizes near Ey. The closer the gain of the system G to 1~ (i.e., lower but close

to 1), the higher is the value at which it stabilizes, kBT X (to + kAt). If the absolute value

of G is bigger than 1, the system is unstable.



d. One particular case: the classical analysis of a parallel feedback configuration

The previous examples are very general since each variable of the system can be
dependent on other variables. But in some cases, knowledge of cause and effect relationships
provides a priori information about the ordering and the structure of dependencies. It is
then possible, and recommended, to use this information. This kind of a priori information is
used, for example, in the Cause and Effect Analysis technique [Andronova and Schlesinger,
1991; Andronova and Schlesinger, 1992].

In the classical feedback analysis [Hansen, 1984; Schlesinger, 1985], it is supposed
that the external fircings Ex, of the system act on only one variable X, of the system,
that all the other internal variables {X; = X;(X,)} are all dependent on one particular
internal variable X, (i.e., the diagnosed variable), that the impact of the external forcings
is observed on this particular internal variable X;, and that the feedbacks act in parallel
(Figure 2). These ¢ssumptions are very strong cause and effect constraints: the diagnosed
variable X, is supposed to be more important than the others internal variables {Xi}, by
hypothesis the {X;} are dependent only on X, and they are not directly dependent on the
external forcing. In this case, the feedback processes are assumed to act in parallel, i.e.,
they do not interact.

Since the external forcing Ex, of the system acts on only one variable, X,, of the

system, the general multi-dimensional expression in equation (8) becomes a scalar relation:

8X.(to + 2 At)

AX,(tg + 2At) =~ Ex, (to + 2At) + Z Xt AD AX(to + At)
X.(to +2 A)Xi(to+ A)
R ATy > AR EREEEIC) (14)

We measure the effect of the constant external forcing, Ex,, on X,, the diagnosed variable
(Figure 2). We then analyze the system AX, — AXy. So the perturbations AX;(t; + At)
and AXj(ty) are considered only for the diagnosed variable X;. In other words, the impact

of the perturbations of other variables than X, are not taken into account in this classical
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analysis (see Figure 2). Thus, the expression (14) becomes:

X, (to + 2 At)
0Xa(to + At)

Z OX.(to + 2 At) X, (to + At)
OXi(to+ At)  0Xa(to)

Due to the hierarchical dependencies adopted, X¢(to) = Xa(to + At) —= Xi(to + 24At), see

AX,(to + 2At) ~ Ex, (tg + 2At) + - AX(to + At)

- AXq4(to) (15)

Figure 2, some of the partial derivatives in (14) are zero:

0X(to +2 At) _ 6)(8(150 +2 At)

BXg(to + DY) OXe(to+ A1) (16)

and the expression (15) simplifies to:

. N OX(to + 243t) 0Xi(to + AL) , o,
AX.(to+ 2At) =~ Ex_(to + 24At) + dz Xt DY) OXito) AXy(ty)  (17)

external forcing K _
feedl sack terms

7? ~ Ex, (to +2At) + ) Hi(to, to + 248)AXa(to) (18)
i#d,iFe

where the terms H;(to, tg + 2At) are the products of first derivatives describing the cause
and effect relations. Expression (??) can be multiplied by the gain G(to + 2At,%, + 3At) of
the system AX,(to + 2At) — AXy(to + 3At):

AXg(to + 3At) =~ G(to + 2At, 1o + 3At) - AX,(to + 2At)

~ G(to+2At, tg+3At) - Ex, (to+2At) + G(to +2At, to+3At) - D~ Hi(to, to+2A8) AX(to)

i#di#e
(19)
If the system is in equilibrium, or if At, the time discretization, is sufficiently small,
AXd(to + 3At) jad AXd(to), thus:
(1 + G(to + 2At,t + 2At) - Y Hilto,to + 3At)) AXy(to + 3At) ~
i#d,ite
G(to + 2At, 10 + 3At) . EX, (to + 2At) (20)

G(to + 24t,to + 3A1)
1 — G(to + 2At,tg + 3At) Tizaize Hilto, to + 3A1)
__ Glto +2At,t, + 3AY)
T 1 = Tisaize filto, to + 3At)

= AXgy(to+ 3At) ~ Ex,(to+2At) (21)

Ex, (to + 2At) (22)

11



where the terms fi(to, to + 3At) = Gty + 2A¢, ¢ + 3At) - Hi(to, to + 2At) are called the
feedback factors. The gain with feedbacks is then defined by:

G(to + 2At, o + 3At)

. 23
1 — Yigdise fi(to, to + 3AL) (23)

Gty + 2At,t0 + 3At) =

The feedback f; factors are dependent on both the variable X, perturbed by the external
forcing and the diagnosed variable, X, chosen in the beginning of the analysis. These
feedback factors are time-cependent, but this expression is traditionally [Peizoto and
Oort, 1991; Curry and Webster, 1998] given without time reference. This means that it is
supposed that the system is in equilibrium or that the quantities are examined locally in
time.

Another way to find this expression, is to formulate this system as a “mono-variable”
forced dynamical system AXy(to) = AXy(to+ A t). The total gain of this system is defined

as GH which represents the feedback loops plus the non-feedback gain, where:

o G = %%%‘2 is the gain without feedbacks of the system AX, — AX,

o and H =54,z aa},‘;f,((tt%ﬁfz;) a)g“}((t;(jo‘)“), represents the feedbacks.

The forcing of the variable X, is given by GEy,. In the limit of decreasing time steps, we

could use the expression (12), to obtain:

G

AXd = mEXe (24)

This expression converges to the continuous case as At — 0. In the original field
where this formalism was developed, i.e., the analysis of electrical circuits [Bode, 1945],
the relation (15) is instantaneous since the electricity propagates continuously. In this
continuous case, the time reference in equation (15) can be suppressed. The same remark
holds if the system is in equilibrium, i.e., if the previous perturbations are constant in time.
Thus, this analysis has to be done locally in time or at equilibrium.

The gain of the system, Gy, is very sensitive to the estimation of the factors, f;.

Furthermore, it is very important to estimate all these factors simultaneously since the

12



effect of one particular feedback is sensitive to the presence or or the absence of other
feedbacks.

Figure 3 shows the gain of the system, G, as a function of the unique feedback factor,
f, supposing that the gain of the system without feedback is G = 0.5. If f < 0, the gain
with feedback is damped, 0 < G; < G. If f = 0, the gain with feedback is unchanged,
G; = G. If 0 < f < 1, the gain of the system with feedback is increased, Gy > G, and
}:rr} = +00 (the system becomes unstable). If f > 1, Gy is negativ>, so the system oscillates,
and it is unstable if G; < —1. We see in this figure how the effect of a feedback factor on
the system can be sensitive and highly nonlinear. So the significance of a feedback factor is
strongly dependent on the availability of the feedback factors of all variables: an isolated

feedback factor can’t characterize the behavior of the whole system.

e. One classical example

The following example as been intensively used in the literature. We suppose that the
global mean net radiation flux (solar minus terrestrial) at the top of atmosphere (TOA) is
in equilibrium (AFroa = 0). The question is: if a forcing is introduced into the system,
how will the system react ? The global mean surface temperature T's is often taken as
diagnosed variable since a lot of other internal variables of the system are dependent on this
variable. Then, we can analyze the feedback process loops acting on T's using the above
formalism if all feedbacks are assumed to act in parallel.

volcanic eruptions, etc). We analyze the system:
FTOA(t + At) = F(Xezt(t)a Xi(t)’Ts(t))' (25)

The terms X; are the internal variables of the system (i.e. that depend on the surface

temperature, X; = X;(T's)) like the albedo, the water vapor, the lapse rate, the clouds, etc.
We suppose here that it is possible to express the external forcings, Ex..,, in terms of
perturbations of the net radiation flux, Froa. The forcing introduces perturbations into

the variables of the system; the link between these perturbations can be expressed by, see
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equation (17):

ATs(to)  (26)

OFroalty + 2At) 0X,(to + At
AFroalto+241) = Eroalte + 244) + 3 67;?1500+ At)) B;Z(to) )

external forcing ~

s

feedback loops

If the equilibrium state is reached, or if the sensitivities are instantaneous, the reference

to time can be suppressed:
AFroa = Eros+ (D_ H;)ATs (27)

where the terms H; are the products of first derivatives describing the cause and effect
relations in equation (26). By multiplying this expression by the gain of the system without

feedbacks, G = ag%, we finally obtain the following familiar expression:
G G

T:‘G,—EEETOA = mETOA (28)

ATs =

f. The classical analy:is in a series feedbacks configuration

It is supposed again that the external forcings, Ex,, of the system acts on only one
variable, X, of the system. There are two diagnosed variables: Xy and Xy, Xz being
dependent on Xy;. Some of the internal variables {X;; = X;;(X4)} are dependent on Xy,
and some others {X;; = X;»(X42)} are dependent on Xz. The impact of the external
forcing is observed on diagnosed variable Xz (Figure 4). This internal structure describes
a dynamical system X, — Xy — Xgp, with feedbacks in series. In this case, the gain of
the subsystems X, — X4 and X4 — X4, would be computed as in section 2.d. Then, the

global gain of the system would be G; = Gy, - Gy,.

g. Comments on classical feedback analysis

We have seen in the two previous subsections that where particular cause and effect
relations in the system are known, the time reference is required in the discrete case, but

can be suppressed in two situations:

¢ In an equilibriun. state: the perturbations are stabilized % = 0 (not to be confused

with zero forcing), so they are the same at each time step. The feedback analysis is
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then only a characterization of the equilibrium state. There is no estimation of the
time required to reach the equilibrium and we can’t predict transient behavior of the
system. Furthermore, we don’t know a priori the sensitivities in the equilibrium state,
so we are required to assume (without evidence) that the sensitivities are constant

and that we have a good estimate of them.

e When the sensitivities are instantaneous: the relations between the perturbations of
each variable of the system are then valid without a time reference. But in this case,
instantaneous estimates of the sensitivities are required and the feedbacks factors
have to be computed at each time. To our knowledge, ttis approach has not yet

been investigated since no technique was available to esti:nate these instantaneous,

The classical approach to feedback analysis from the electrical circuits theory [Bode, 1945]
was first used on a theoretical energy balance model of the clin.ate where instantaneous
sensitivities are available. Even if the estimation of sensitivities was crude, the applicability
of the technique was justified when the cause and effect relationships were supposed to

be known. In more recent studies, and particularly with the analysis of observations, this

- Model used: The hierarchical model of cause and effect relations, described by greatly
simplified relations between sensitivities, is usually much too simple. For example, the
fact that the forcing/gain/response system has to be mono-variable is a very strong
simplification: such assumptions result in the suppression/neglect of some perturbations
and some first derivatives in the system.

- Estimation of sensitivities: The sensitivities are often estimated by finite difference
between two (usually equilibrium) states of the system. First, this approach measures only

the coincidence of the changes in two quantities, but it does not mean that there is a cause
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and effect relationship between these variables. The relationships might also be indirect
(via the ordering of the dependencies). Second, this approach measures the changes in two
quantities and the sensitivity is then estimated assuming that the other variables do not
interact. This is a strong limitation since there are a lot of cross-linkages in the variables of
the climate system. Third, the finite difference for the estimation of the sensitivities can be
highly misleading if the sensitivities of the system are not constant in time.

- Forcing process: The forcing model is often not expressed: localized in time, constant,
growing in time, cyclic, etc 7 The ways the external forcing evolves in time are also
important for the study of the transient response.

- Better description: Previous approaches to feedback analysis are often only a
characterization of the equilibrium state of the system after the introduction of an external
forcing. The transient period between the beginning of the forcing and the equilibrium
state is not described, the time to reach the equilibrium is not estimated. This is a real
drawback for the understandmg of these phenomena Furthermore the gam of the system
vuth feedbaek factors is highly dependent on the precision of the sensitivity estimates.

In conclusion, the classical feedback analysis is limited by some very strong assumptions
like linearity (i.e., sensitivities constant in time), equilibrium, mono-variable cause and
effect relationships, etc, and so does not seem at all appropriate for application to the
climate system. Moreover, the resulting expressions for the feedback factors are products
of the instantaneous sensitivities, so it would seem .more straightforward to evaluate these
sensitivities instead. To avoid the classical limitaticns, the analysis needs to employ a
general] feedback formulation to evaluate the nonlinear, multivariate and instantaneous

sensitivities in both numerical models and observations is important.

3. A nonlinear regression scheme for estimation of sensitivities

To estimate the sensitivities of the dynamical model in equation (1), we use a
multivariate nonlinear regression fit to the statistics produced by observing the behavior of

the system over a time period long enough to provide a good sample of the different states of
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the system. For this purpose, we introduce a neural network technique because of its ability
to process large dimension data (which will be helpful for further experiments on numerical
models) and its capacity to integrate a priori information about the problem [Aires, 1999].
Any other multivariate nonlinear regression technique, such as spline interpolation or

ARMAX models, etc, could be used instead of the neural network technique.

a. The neural network model

The Multi-Layer Perceptron (MLP) network is a mapping model composed of parallel
precessors called “neurons”. These processors are organized in distinct layers: the first layer
(number 0) represents the input P = (p;; 0<i< mg) with mg the number of neurons in
layer 0. The last layer (number L) represents the output mapping X = (zx ; 0<k <my).
Th> intermediate layers (0 < m < L) are called the “hidden layers”. These layers are
cornected via neuronal links (Figure 5): two neurons, ¢ and j, between two consecutive

layars have synaptic connections associated with a synaptic weight w;;.
Each neuron, j, executes two simple operations: first, it makes a weighted sum of its
inputs from the previous layer, z; this signal is called the activity of the neuron:
a; = Z Wwij + 2. ' (29)
ieInputs()
Then, it transfers this signal to its output through a so-called “transfer function”, often a

sigmoidal function such as o(a) = tanh(a). The output 2; of neuron j in the hidden layer is

then given by: z; = ¢ > wy; 2 | . Generally, for regression problems, the neurons
telnputs(j)

in the output (last) layer have no transfer function. For example, in a one hidden layer

MLP (Figure 5), the kth output, zx, of the network is defined as:

oe(y) = Y wik o(a;) =D wiko (Z Wij Pi) (30)

JES J€S 1€5p

where ¢ is the sigmoidal function, a; is the activity of neuron j and S; is the ith layer of
the network (with ¢ = 0 for the input layer). We have deliberately omitted the usual bias

term in this formula for clarity, but include it in the actual network.
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The key to our analysis is that any continuous function can be represented by a
one-hidden layer MLP with this kind of sigmoid function [Hornik et al., 1989; Cybenko,
1989]. Hence the process of training the MLP to fit the observed multi-variate, nonlinear
relationship statistics is equivalent to deriving a multi-variate, nonlinear function that
behaves in a similar fashion as the dynamic system in question. The key advantage of the
neural network approach over some other methods is that the Jacobians (i.e., sensitivities)

can be evaluated directly from the MLP (see next section).

b. The learning algorithm

Given a neural architecture (number ¢ f layers, neurons and connections, type of transfer
functions), all the information of the netw rk is contained in the set of synaptic w’eiéhts Wij.
The learning algorithm is an optimization technique that estimates the network parameters
W = {w;;} by minimizing a loss function, C(W), needed to fit the desired function defined
by observations as closely as possible. The criterion usually used to adjust W is the mean

square error in network outputs:

13

cw) =53 / / (zx(P; W) — t)2H (t/ P)H(P)dtxdP (31)

with #; the k' desired output component, z, the k** neural output component, H (tx/P)
the probability function of output ¢, given the input P, and H(P) the probability density
function of input data, P. If specific a priori information about the probability distribution
functions is available, other quality criteria than least-squares could be used. For example,
criteria involving higher-order statistics have been defined [Aires et al., 2000]. Practically,
C(W) is approximated by the classical least square criterion:

E
TW) = % (zk(P; W) = 1;)? (32)

e=1

The Error Back-Propagation algorithm [Rumelhart et al., 1986] is used to minimize
C(W). It is a stochastic steepest descent (i.e. Newtonian minimization procedure) very well
adapted to the MLP hierarchical architecture because the computational cost is linearly

related to the number of parameters.
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c. The neural Jacobians

The important feature of neural network is that the adjoint model of the neuronal
model is directly available [Aires et al., 1999]. The computation of this adjoint model (or
neural Jacobians) is accurate and very fast. Since the neural network is nonlinear, these
Jacobians are dependent on the situation z. For example, the neural Jacobians in the

previous example of equation (30) (a MLP network with one hidden layer) are:

jE€ES 1€8Sy

0z o
'a—pf = Z ’LUjk% (Z w,-jpi) w,-j. (33)

where % is the derivative of the transfer function ¢. For a more co nplex MLP network
with many hidden layers, there still exists a back-propagation algoiithm for efficiently

computing these neural Jacobians.

The neural Jacobians concept is a very powerful tool because it allows for the direct
statistical evaluation of the multivariate and nonlinear sensitivities of the dynamical system

under study.

d. Regularization

If a priori information about the dynamical model under study is available, it is

possible and recommended to use this knowledge in the neural network analysis. This a

priori information could be introduced in the three distinct components of a neural network:
- Dataset: The quality and the representativeness of the dataset used for the training
of the neural network is directly responsible for the quality and the generality of the
nonlinear regression obtained. We will comment further on this during the construction of
the dataset for our application.
- Architecture: A lot of information could be used to define the neural network

architecture: ordering of variables, neighborhood system between variables, dependencies

structure, etc. A particularly promising development would be to use the ordering of
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- Training: If the sensitivity between an input and an output variable is already
known or if it is known that this sensitivity is constant, it is possible to specify this a
priori information as a penalty term added to the quality criterion (32) used to train the
neural network. Other kinds of solution constraints can also be used: shape of the solution
distribution, noise in the measurements, particular dependencies between variables. Such
an approach has been used, for example, in [Aires et al., 1999] in the atmospheric radiative

transfer field.

4. Analysis of the discrete Lorenz model

To test the definitions and the technique previously presented, we apply it to a simple
nonlinear, multivariate, chaotic, non-stationary and forced dynamical model for which the
sensitivities are known analytically. We choose here a discrete form of the low-order Lorenz
model [Lorenz, 1984]. This model is very general since it is not a mono-variable structure,
as described in Sections 2d and 2f, and it exhibits very complex behavior. Nonetheless, we
can define the time relationships directly from the equations of the model to test our ability
to infer these relationships from the observed behavior (model output).

We have discretized the Lorenz continuous model for two reasons: first, the discrete
formulation makes it easier to describe the cause and effect relations of the feedback

processes. Second, we know exactly, in this case, the analytical sensitivities of the system,

which allows for a better quantitative evaluation of our analysis technique.

a. Continuous Lorenz model

The low-order model used in this study was developed by Lorenz [Lrb;eﬂrirz;,' 1984; Lorenz,
1990] to analyze the chaos and stability assumptions about the atmospheric circulation.
This simple model is able to represent the Hadley circulation and is used to determine the

stability or the instability of this circulation (stationary or migratory disturbance). This
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model is defined by three Ordinary Differential Equations (ODE):

B0 =-v(t) - 2t - e X(O) +a By
PO X)) V() -bX(t) Z()-Y(t)+ F (34)
2O b X() V() +X(1) Z(t) - 2(t)

where:

e tis the time (in units of about 1 day),

X is the intensity of the symmetric globe-encircling westerly wind current and also

the poleward t2mperature gradient (assumed to be in permanent equilibrium with it),

»

Y is the cosine phase of a chain of superposed large-scale eddies, which transport heat

poleward at a -ate proportional to the square of their amplitudes,

7 is the sine paase of a chain of superposed large-scale eddies, which transport heat

poleward at a rate proportional to the square of their amplitudes,

F, is a zonally symmetric thermal forcing on X,

F, is a zonally asymmetric thermal forcing on Y.

The two forcings Fy and F, are the values to which X and Y would be driven if the westerly
current and the eddies were not coupled.

fourth-order technique can be used for that purpose. Figure 6 shows the integration

of 34 from to = 0 to T = to + NAt using: a = 025, b =4, F, = 8§, F; =1 and

At = 0.08. The initial state of the system at time ¢ = 0 is taken as: X (0) = 1.312465072,
Y (0) = 1.486416698 and Z(0) = 0.3487878144. Lorenz has shown that this system with

these parameter values has a chaotic behavior.
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c. Discretization of the dynamical system

We are not interested in a perfect simulation of the Lorenz model; rather, we are

interested in a representation of this system in a form like

X(t+1) X(@)
Yit+1) | =A| Y@) |, (35)
Z(t+1) Z(t)

as a test of our analysis technique.

By discretizing (34), we obtain:

X(t+1) =At[-Y([)-Z(t)’+a F] +(1—a At) X(2)
Y(t+1) =At[~bX(t) Z(t) + F) +(1 — At + At X (1)) Y(2) (36)
Z(t+1) =AtbX(t) Y(2) +(1+ At X(t) - At) Z(2)

where At is the discrete time step.

The size of the time step At needs to be sufficiently sm.all so that the linearization of
the system during a time interval is accurate in order that means that the hypothesis that
the Jacobians of the system are constant during the time interval is true.

The time discretization is also directly related to the regularity of the Jacobians of
the system: high complexity requires small time steps to ensure a good description of the
evolution of the Jacobians. We take At = 0.08.

The differences between the fourth-order Runge-Kutta integration of (34) and the
discrete Lorenz model 36 are shown in the Figure 7. We see that these differences are small
at the beginning of the period, but that the amplification of these little difference becomes
mmportant over time since the system is chaotic. The behavior of the continuous and the
discrete systems seems to be the same, in particular the same amplitudes for the minima
and maxima are observed. All that is required to test our analysis is that the discrete model
exhibit complex, nonlinear behavior: we take the discrete model to be the truth and test

whether we can infer the correct the relationships with our neural network technique.
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d. Sensitivities of the dynamical system

The Jacobian matrix of the discrete system is:

X(t+1) 82{'){;{-{;)1) ag()(,ta)n a)afgg)l)
G| ve+1) |=| G G o 7
zery )\ SR S 5
1—a At -2 At Y(t) -2 At Z(t)
=| —Atb Z@)+AtY(t) 1-At+At X(t) —bAt X(2t) (38)
AtbY(t) + At Z(t)  Atb X(2) 1+ At X(t) - At

These Jacobians are dependent on the state of the system, so they are also dependent on

used to understand this system.

e. Theoretical feedback analysis

The two external forcing, aF; on X, and F; on Y, are continuous and constant in (34).

In the discrete formalization, this is simulated by a constant impulsive forcing:

AX(to+k At) =Ata Fy
for k=0,...,N (39)

AY (to+k At) =AtF,
If the beginning state of the simulation is chosen as:
X(to) =0
Z(t) =0

then, the state of the system at the next time step is given by:

X(to+ At) =A4Ata F
Y(to+At) =40t F (41)
Z(to+At) =0
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and, for the next time step:

)((to-’r? At) =2AtaF1-—At3 F22~At2 02 F1
Y{o+2At) =2AMtF-AP FR+A%a R F (42)
Z(t0+2At) =At3abF1 F2

and so on. We analyze the impacts of the external forcings, a F} and F3, in the diagnosed
variable, chosen here to be X.
The perturbation at time to + At, Aa (¢ + At) = At a F), is straightforward. At time

to + 2 At, without feedbacks, the forcing would simply be added:
AX(tg+2At)=2Ata F (43)

With feedbacks, the true perturbation is given by:

0X (to + 2 At)

AX (t0+2 At) = Ex(t0+2 At) + 3X(t0 +At)

Ex(to + At)

8X (to + 2 At)
Y (t, + At)

= 2AtaF1 - Atapgz h At2(12F1 (44)

Ey(to + At)

Comparing expression (43) and expression (44), we note the presence of two correction
factors giving the contribution of the feedback processes: so far there are feedbacks caused
only by the integration of the variables over time. This expression for the perturbation is in
agreement with first equation in (42).

For the description of the indirect feedbacks, three time steps are required. At time

to + 3 At, the integration of the external forcings is even more complex:

7 — 8X (to + 3 At) 8X(tp + 3 At)
AA (t() + 3 At) = Ex(tg+3 At) + mEx(to+2 At} + mEy(to+2At)

”

external forcing direct ?e:dbmks

4 [BX(to+3 800X (10 4280 | BX(ta 3808V (ta+2 AN  OX(tg+3 B0 0Z(ta+280] b\ ay
BX(lo + 2 &f) 0X(to + &)« 8Y(ig +2 Af) OX(to + B1) « 0Z(tg +2 &) 0X(to+88) | ~°

~ s

v

indirect feedbacks

BX(to +3 A1) OX(to +2 B2} 8X(tg +3 At) 8Y (tg +2 At) . 8X{to +3 A1) 8Z(tg + 2 At) 45
-+ - Ey (to + At) ( )
3X(to +2 B1) Y (to + At)  BY (1o + 2 At) 8Y(to + At)  BZ(tp + 2 At) 8Y (tg + At)

indirect feedbacks

~ >4
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We note in this expression some terms that do not appear in the classical analysis formalism.
For example, the direct feedbacks terms (due to time integration of the variables) are
suppressed in the classical analysis. Furthermore, we see that in this expression both
forcings (on variable X and on variable Y) are taken into account, which is not possible in
the classical approache.

Integrating the system for one more time step would be highly complex, this is the
reason why prediction of this kind of dynamﬁircg’l system is a difficult problem. To perform
prediction, the model needs to represent the sensitivities with a high degree of precision.
Otherwise, an error at one time step is rapidly amplified in the next time steps.
the Lorenz system since - here is no preferred variable on which the other two variab]e.s of
the model depends. So w2 see in ﬁhis simpié“—;éxample how limited the assumptions used in
Again, it is clear that evaluation of the sensitivities is more straightforward than evaluation
of feedback factors, which are products of sensitivities. However, for illustrative purpose
we will also use the classical formalism to calculate feedback factors because they are more
familiar. If we choose the variable ¥ as he variable affected by the external forcing and X

as the diagnosed variable, the gain of the system Ey — AX is given by, see equation (24):

i H
A)& =—1—;—ETE'EY=Gf'EY (46)
G
e “

where:

o G = 2% is the gain without feedbacks of the system Ey = AX,

e and H=%+Ei§%%§l.
The three feedbacks factors for this mono-variable system are defined as:

yx  OX OV
X oY 60X
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yx _ 0X8Y oy

Y T 8Y oY ox (49)
. 8X3Y 62

YX _ arys Ve

Z = Gy az7ox (50)

Note that the sensitivities used in this relation still are dependent on time and have to be
estimated precisely, so that the feedback factors are also time dependent. As we will show,
this fundamental property of complex, nonlinear dynamical systems reduces the value of

the classical (linear) feedback analysis for understanding the system behavior. Note again
that the above quantities are not the true feedback factors for the Lorenz model since they

are defined using invalid assumptions.

5. Experimental results
a. Construction of the dataset

The quality of the dataset used to evaluate the sensitivities is a crucial point. For
example, using data from a system in equilibrium or from a system during a transient
chérilr:giz:\i"ifll;ﬁ(')t giife the same results in the analysis. Ideally,iagood datasef Qould be one
including all ranges of variability for all combinations of the variables of the system. The
more situations that are included in the dataset, the larger will be the range of validity of
the sensitivity estimates. This situation parallels that in climate analysis where the range
of validity is limited by the range of climate states actually observed.

The discrete dynamical version of the Lorenz model stabilizes more rapidly onto its
attractor tharn the continuous version. So to create a dataset closer to the behavior of the
continuous system, we choose 200 noisy states of the continuous system as initial states
for 200 trajectories of 1000 times steps of the discrete system in equation (36). The final
dataset is then composed of N = 200,000 couples {(I*,0%) ; k =1,.. ., N}, where
I* = (X(to+ k At), Y (to + k At), Z(to + k At)) is an N x 3 matrix of the inputs of the
system and OF = (X (to + (k+ 1) At),Y(to + (k + 1) At), Z(to + (k+1) At))isan N x 3
matrix of the outputs. Each couple is linked by: O* = A(I*).

The parameters for the Lorenz model are the same as previously: a = 0.25, b = 4,
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time step and in each variable. Figure 8 shows the resulting noisy trajectories included in

the dataset. o

b. Linear and nonlinear regressions

If a priori information is available about what are the good predictors, the dynamical
system can be described as a linear model. In the Lorenz case, the good predictors, P(t),

of the general model (1) can be determined from the theoretical model (36):
P(t) = (X(8),Y (), Z(t), Y2(t), Z*(t), X ()Y (¢), X (1) Z(2), Fn, ). (51)
In this configuration, the dynamical system of equation (36) becomes:

X(t+1)
Y(t+1) | =A-(X(t),Y(),Z(t), Y1), Z°(t), X(t)Y (), X () Z(t), Fr, F2)  (52)

Z(t+1)

where the constant matrix A is given by:

l-aAt 0 0 —At -At 0 0 alt 0
A= 0 1At 0 0 0 —-At —-bAt 0 At (53)
0 0 1-At 0 0 bAt At 0 0

A linear regression in this.case would give a good estimate of the matrix A. This is a very
general idea: all nonlinear dynamical systems could be simplified, and even linearized, if all
of the good predictors are known. o

In practise, this a priori information is not available, so choosing the good variables
to predict system behavior is a key issue that has no general answer. Usually, then, the

predictors are chosen as the state variables; model (1) becomes:

X(t+1) X(t)
Y(i+1) |=A| Y(@t) (54)
Z(t+1) Z(t)
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Now, a linear regression analysis approximates the nonlinear function A by a linear
model: A is replaced in (54) by a 3 x 3 matrix A. This matrix is estimated by minimizing

the least squares criterion and is given by:

(55)

(@)

The use of this linear regression is already an improvement compared to classical
approaches because it allows the simultaneous estimation of multivariate sensitivities.

For a nonlinear regression, we use an ML.> network with one hidden layer. The
architecture has three units in the input layer coding I = (X (t),Y (¢), Z(t)), 30 units in the
hidden layer (this number was chosen by trial in the training phase) and three units in the
output layer coding the prediction, O = (X (t+1),Y (¢t + 1), Z{t + 1)).

For the training of the neural network (i.e. estimation of the parameters for the
nonlinear regression), we have used 150,000 points randomly chosen from the data set
previously constructed and for the test data (i.e. to measure the ability of the model to
generalize to unknown data) we have taken the remaining 50,000 points.

In Figure 9, the theoretical (points) function A and its two estimates (by linear and
neural network regressions) are illustrated. For display purpose, each plot represents one of
the variables at time t + 1, as a function of a variable at time ¢, supposing that the two
other variables are equal to their mean values. It is clear that the neural network regression
is very precise (differences with the theoretical function are undetectable) and useful for the
nonlinear behavior (X (t+ 1) as a function of Y (t), for example), where the linear regression
is very poor. This figure shows how important the nonlinear aspect is: the multivariate
approach of the linear regression is not sufficient. These conclusions are confirmed in Figure
10 where the RMS error for the estimation of the functions is given. Here the errors of the
linear regression are nearly as large as the variability of the quantities.

A dilemma that we will be faced with in applying this technique to a real case,
numerical model or observations of the climate, is that we do not know the true answer
as we do here for the Lorentz model. Hence, we must develop practical ways to assess the

fidelity of the analysis results. One possibility is to conduct “prediction” experiments where
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we pick many specific and different episodes in the observed record (preferably time periods
not included in the original analysis), initialize the neural network at the beginning state,
to test quantitatively whether the derived sensitivities used in the neural network can

reproduce the observed system dynamics in cases not included in the original analysis. It

sensitivities can be used to understand the physical processes; at least the sensitivities of a
model can be compared with observations. We have tested this idea by making prediction
runs with our neural network representatio1 of the Lorentz model: the calculation proceeds
by calculating the state of the system at time step, ¢ + 1, from the state and sensitivities
of the system at time, t; the sensitivities ave then calculated at time, t + 1, and used in
the next cycle. Figure 11 shows the evolution of the rms error of the predictions based

on the linear and our nonlinear statistical models against the actual model started at the

AR

same state (each time step = 0.08 units, about 2 hr in the scaling of the equations). As
expected, the nonlinear regression by the neural network does much better than the linear
regression, but the fact that the Lorentz system is chaotic (with the particular parameter
values used) results in a relatively rapid increase of prediction error, even with an accurate
approximation of the system dynamics. Figure 12 illustrates the time records from the

prediction model and the actual model.

c. Analysis of sensitivities

We illustrate the retrieval of the variable sensitivities in the form of histograms of
their distribution of values as a functions of X (t). Similar figures (not shown) are obtained
as function of Y () or Z(t). The standard-deviation of the theoretical sensitivities of the

system are shown in Figure 13, indicating that the all sensitivities of the system, except for

oX(t+1)

o[ T€ not constant.
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The classical approach for the estimation of sensitivities takes the finite difference in
two variables between two (usually equilibrium) states of the system or two extreme events.
For example, for the estimation of 2—{,", two sets of extreme events of the variable Y could be
selected in the observations and the averages of the state differences < AX > and < AY >

estimated. Then, the following approximation would be used:

Q’_(t)~<AX>
X' T < AY >

We see how this approach can go wrong because it is so dependent on the selection of

(56)

data: at best, it gives a crude estimate of the mean sensitivity for the selected dataset of
extremes. The results of this approach for the Lorenz model would be very poor.

The particular sensitivity a—g/\%—]l is the only one that is constant, i.e. does nct depend

on the state of the system: in equation (38), a—-g)-((t(it)ll =1-a At (the values in Fig're 13 are
not perfectly equal to zero due to numerical imprecision). The linear regression, ior this
particular sensitivity, is then a good estimation technique. So the results are goou in this
particular case, but for the eight other sensitivities, the results of the linear regression are
insufficient. In a real world case, we would not know which results are correct, if any.

The neural network-based estimates of the sensitivities (Figure 14) are a considerable
improvement in comparison to the linear regression-based ones (except for the constant
sensitivity Q—g}%—ll at extreme values of X(t), but the differences are still negligible). Note
that the magnitudes of the sensitivities are very different, yet our technique seems to be
able to retrieve these different orders of sensitivity in the system. Furthermore, these results
are good if we compare the rms errors with the natural variability described in Figure
13. These results are summarized in Table 1. Since linear regression-based sensitivities
are constant by assumption, the rms errors of this representation are essential equal to
the standard deviations of the sensitivities. The improvement of the neural network-based
sensitivities is considerable with respect to the linear regression: standard-deviations errors
is always (except for the constant sensitivity) smaller than the natural standard-deviation of

the theoretical sensitivities by one and somtimes two orders of magnitude. Given the large

range of sensitivity magnitude, it is notable that the RMS errors of the neural network are
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uniformly distributed over the nine sensitivities, even if the variability of the sensitivities is
quite different. Table 1 summarizes the improvement gained by use of the neural network
Jacobians to estimate the instantaneous, multivariate and nonlinear sensitivities of the
discrete Lorenz dynamical system. -
Figure 16 shows an example of the evolution in time of the theoretical and neural
network estimates of sensitivities. The differences between the theoretical sensitivities
and the neural network-based estimates are undetectable in this figure. This figure also
highlights the more complex role of the feedbacks processes: when the state of the system
reaches some extreme value, the sensitivities change, even in their sign, taking to the system

back towards a middle range of values and finally to stabilize the system on its attrsctor.

For example, using the theoretical sensitivities in equation (38), we can analyz: the

9X(t+1)

v = —2 Ot Y(t) becomes large and negative. So, if Y continues to increase, the

variable X will decrease even more rapidly. But the auto-sensitivity %%1 (the most
important sensitivity for the variable V) is equal to 1 — At + At X (t), which will be lower
than 1 (damping effect) when X is lower than 1. One consequence of this behavior is that
particular sensitivities, even when they are small on average, can still have a strong impact
on the behavior of the system. A linear regression analysis assuming that the sensitivities
are constant in time, may provide some estimate of mean sensitivities from a dataset. For
example, the sensitivity a—gg—(“f)—ll is, on average, nearly zero. A linear analysis, in this case,
might suggest neglecting this relationship in understanding the system. Figure 15 shows
how wrong this approximation would be: this figure represents the discrete Lorenz model
defined in equation (36) with and without this particular sensitivity. The two trajectories
strongly and with a different time scale. The behavior of the complete system is produced
by oscillations of the particular sensitivity, depending on the state of the system, between a

positive and a negative value, theby stabilizing the system dynamics.

These results are special features of the general tendency of the sensitivities to exhibit
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similar shapes in their time records (Figure 16), which means that they are closely linked
with each other. This type of nonlinear behavior prevents a linear, even multi-variate,
regression analysis from extracting even approximate information about the system
dynamics. Comprehension of the system seems to require a more accurate representation of

the time evolution of the multi-variate sensitivities.

d. Feedback analysis

We have seen that the classical approach for the feedback analysis, which makes strong
(and incorrect) hypotheses about the dynamical system, is not well adapted to the Lorenz
model.

However, the feedback factors can still be computed for the theoretical function, the
linear regression model and the neural network model according to equations (48)/(50). We
suppose here that these expressions are applicable to show that these feedback factors evolve
in time (Figure 17), in violation of one of the assumptions used to describe the expressions.
The feedback factors (48)/(50) are not simple and do not improve our understanding of
the system since their physical interpretation is confused since these feedback factors are
products of the sensitivities. The sensitivities, themselves, seem to be the more fundamental
quantities. Furthermore, as we showed in Section 2, without all the assumptions at the base
of this formalism (linearity, constant sensitivities, hierarchical cause and effect relationships,

constant forcing, equilibrium state, etc), the whole formulation in terms of feedback factors

falls apart.

6. Concluding remarks

What we have learned with this study of the Lorenz model is that the feedback
processes are dependent on some important particular properties of the dynamical system
under study. First, the feedback processes appear in a dynamical system when multivariate
sensitivities are integrated over time. Second, if the system is nonlinear (i.e. the dynamical

operator in equation (1) is nonlinear), the sensitivities are not constant with time, which
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means that the feedback processes evolve in time. Third, each feedback has a strong
impact on the character and behavior of the dynamical system, even those that may have

a small time-averaged magnitude can have a stabilizing effect that changes drastically the

characteristics of the system. Without such feedbacks the dynamical system would have a

tendency to destabilize when an external forcing is introduced. The feedback processes have

extreme events. This is a theory that has been discussed recently by [Palmer, 1999]. Such
an effect might explain the increase of the frequency of ENSO events with an increase of
CO,.

We have shown that the classical technique ‘o analyze climatological feedback processes,
from the electrical circuit theory, is, by hypothesis, very limited in its validity when applied
to highly nonlinear multi-variate systems. Its ajplicability to the climate problem is even
more questionable. Furthermore, the results of *his kind of classical analysis are no more
than a “schematic” measure of feedback processes at equilibrium of the system, which may
be very misleading. o

In comparison, the multivariate, instantaneous and nonlinear sensitivity concept, is
more generally applicable without these constraints, and appears to be a good way of
understanding the behavior of a system with coupled feedback processes. This general
technique allows the quantification of these processes both spatially and temporally. This
dynamical information seems to be more useful than classical feedback factor (only one
number per variable).

Our technique for statistically inferring the complex network of sensitivities is
particularly efficient and its generality and simplicity allow for the use of important a priori
some statistical requirements. First, the space and time sampling needs to be adequate

to the description of the space and time variability of the sensitivities that originate the

process feedbacks, so that the assumption that the sensitivities are constant over one



time step is an account approximation. Using too coarse time sampling is equivalent to
using time-averaged data, which mixes many physical processes and ruins the sensitivity
estimates. Using space-averaged data is also dangerous; for example, a mean sensitivity
equal to zero could be generated by two opposite regimes with non-zero sensitivity. In
other words, even if we are studying the longer-term behavior of the system, we must
resolve the dynamics appropriately or the nonlinear integration will be incorrect. A study
on the space/time variability of the sensitivities is then a prerequisite for the definition of a
dataset sampling for feedback analysis. Second, the dataset has to have a good space and
time coverage in order to represent as many climatological situations as possible. In other
words, the dataset should contain all possible combinations of the state variables. Tha
more situations in the dataset, the better will be the “laws” inferred by the analysis. Tese
two points are a major argument to use actual, very large, long-term, datasets instead of
generating new ones, limited in time. Moreover, these comments mean that the dynamics
of the system cannot be correctly deduced from datasets where individual quantities have
been separatelly averaged on space and time.

Our technique has the advantage of being applicable to numerical model data as well
as observations, which means that the important work of inter-comparison of models and
of validation of models could be carried out with a meaningful measure: the sensitivities of
the variables of the system. This diagnostic measure is particularly interesting because it
concerns very intuitive and physical quantities. Comparisons of the sensitivity relationships
could also be made with field experiment data to understand how physical processes
product these sensitivities. Thus, our analysis approach provides a framework for a whole
new attack on these problems.

The statistical model estimating the sensitivities can also be used to study the response
of the system new equilibrium state, including the time to reach equilibrium after a small
perturbation. This simplified model could also be used to analyze the propagation of
uncertainties when predictions are performed. In other words, the neural network statistical

model provides a better approximation of “small perturbation” behavior than attempts
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to linearize the system by dropping relationships. The next step of these ideas is to use

this new technique for more complicated climate systems involving real observations or

numerical model outputs.
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Figure 1. The stabilized values kkﬂ-nooX(tO -+ k At) of a mono-variable linear system for
different values G of the gain of the system and with external forcing Ey = 1

Figure 2. Feedback loops system in parallel

Figure 3. Analysis of the gain Gy of the system as a function of the unique feedback
factor f, with G = 0.5

Figure 4. Feedback loops system in series

outputs X

Figure 6. Lorenz model, with parametersa = 0.25,b =4, F) = 8, F, = 1 and At = 0.08,
simulated by fourth-order Runge-Kutta

Figure 7. Fourth order Runge-Kutta (continuous lines) and discretized Lorenz model
(dashed lines) with parameters a = 0.25, b =4, F; = 8, F; = 1 and At = 0.08

Figure 8. Noisy trajectories of the dataset from the discrete Lorenz dynamical system
Figure 9. Representation of the theoretical Lorenz Dynamical operator (continuous
line), its neural network éstimate (dotted lines), and its linear regression estimate (dashed
lines)

Figure 10. RMS error for the estimation of the dynamical Lorenz operator: neural
network regression (continuous lines), and linear regression (dashed lines)

Figure 11. Prediction RMS error for the Neural Network regression (continuous line)
and the Linear regression (dashed line) as a function of the forecast range (in time steps
At = 0.08)

Figure 12. An example of prediction with a forecast range of 24 time steps

Figure 13. Standard-Deviation of the sensitivities of the discrete Lorenz dynamical
system

Figure 14. Root Mean Square error for the sensitivities estimates: neural network-based

estimates (continuous lines) and linear regression-based estimates (dashed lines)



Figure 15. Discrete Lorenz model (continuous line) and discrete Lorenz model minus

the sensitivity é%ié%l_l (dashed line)

Figure 16. Jacobians evolution through time: theoretical Jacobians (continuous line),
linear regression based estimates (dotted lines), and neural network based estimates
(dashed lines)

Figure 17. Feedback factors evolution through time



Table 1. Statistics on true and retrieved sensitivities

Sensitivity Statistics Theoretical Linear Neural Network
Mean 0.980 0.973 0.981
o Std-Dev 0.000 0.000 0.003
RMS Error 0.007 0.003
Mean -0.077 -0.025 -0.076
e Std-Dev 0.133 0.000 0.132
RMS Error 0.144 0.004
Mean 0.057 0064 -0.057
255l Std-Dev 0.146 0.000 0.145
RMS Error 0.147 0.004
Mean -0.077 0.014 -0.077
Tt Std-Dev 0.297 0.000 0.297
RMS Error 0.310 0.003
Mean 0.955 0.979 0.956
il Std-Dev 0.048 0.000 0.043
RMS Error 0.054 0.003
Mean -0.141 -0.133 -0.141
St Std-Dev 0.192 0.000 0.193
RMS Error 0.193 0.003
Mean 0.184 0.259 0.184
e Std-Dev 0.281 0.000 0.281
RMS Error 0.291 0.004
Mean 0.141 0.226 0.142
o Std-Dev 0.192 0.000 0.192
RMS Error 0.210 0.003
Mean 0.955 0.962 0.955
o Std-Dev 0.048 0.000 0.048
RMS Error 0.049 0.003
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Figure 1. The stabilized values klir_gl X (to + k At) of a mono-variable linear system for
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different values G of the gain of the system and with external forcing Fy =1
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Figure 3. Analysis of the gain G of the system as a function of the unique feedback
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+—X 42

Ee——

1 I Xdl >

Q

EE @

l
%

Figure 4. Feedback loops system in series



INPUTS 8 . OUTPUTS

I I

©000000000

\\?

LAYER O LAYER ] LAYERL

Figure 5. Architecture of a MLP neural network with L layers, with inputs P and

outputs X
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simulated by fourth-order Runge-Kutta



Y()

10

Figure 7. Fourth order Runge-Kutta (continuous lines) and discretized Lorenz model

(dashed lines) with parameters a = 0.25, b =4, F1 =8, F; =1 and A¢ = 0.08
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Figure 8. Noisy trajectories of the dataset from the discrete Lorenz dynamical system
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Figure 17. Feedback factors evolution through time



